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A modification of the "small ~" singular asymptotic method of solving the integral equations of mixed problems in continuum 
mechanics [1] is proposed in the case of a special behaviour of the symbol of the kernel encountered, for example, in contact 
problems of the theory of elasticity for cylindrical and conical bodies [2--4]. Contact problems for elastic cylindrical bodies are 
considered as an example. © 1999 Elsevier Science Ltd. All rights reserved. 

Unlike the traditional approach to solving integral equations of the type considered [3, 4], in which the 
symbol of the kernel is approximated by the sum of two easily factorized functions, which subsequently 
leads to the need to use a certain iterative process, in this paper the symbol is approximated by a single 
easily factorized function. This considerably simplifies the solution procedure and enables one to obtain 
simple approximate formulae for the mechanical characteristics. The possibility of such an approximation 
was pointed out for the first time in [5]. 

1. Many mixed problems in continuum mechanics can be reduced to the solution of an integral 
equation in the function tp(x) of the form 

I 
(1.1) 

k(t) = ~ K(u) cos utdu (1.2) 
0 

Heref(x) and K(u) are known functions, where the symbol of the kernel (1.2) K(u) is an even function, 
meromorphic in the complex plane. Suppose the following expansions exist for K(u) 

g( , , )=  ~01,,I-' +~ , ,  -2 + c~,, -3 + c~,,-' + 0(1=1:5). Co = 1, (I,,I ~ .o) 
(1.3) 

g( . )  = a0 + 41~1+ a2. 2 + a3k, I 3 + o(.4), a0 = A (u --~ 0) 

We will consider two approximations of K(u) by easily factorized functions 

D K*(u)=~u2+B2exd ~---------), ~ e x p ( D ~ = a ,  D=c, (1.4) 
u2+C 2 "~4u2+E2) C" ~.E) 

,c'(u)=  +B2 e J  . ul ) B u2+C 2 V~u2+E2), --~=A, O=c I (1.5) 

The positive constants B, C, D and E in these approximations must be chosen so that the function 
K*(u) possibly more accurately reflects the behaviour of the function K(u) on the real axis, particularly 
when u ---> 0 and u ---> o.. Hence, it is recommended that approximation (1.4) should be used if da = 0 
in (1.3). When dl ~ 0 (this occurs, for example, in the problem analysed in [5]) one must use approxi- 
mation (1.5). If the error of approximations (1.4) and (1.5) is too large, they can be made more 
complicated, without loss of generality, by premultiplying the argument of the exponential function 
and/or the factor in front of the exponential function by a fraction--the ratio of polynomials of like 
power in u 2. 
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For simplicity we will henceforth confine ourselves to the case when f(x) = f. It is well known [6], 
that the principal term of the asymptotic solution of Eq. (1.1) with a kernel in the form (1.2), (1.4) or 
(1.5) for small ~( can be represented in the form 

f l + x  1 - x  x 
tp(X) = ~- [ to ( - -~- )  + tO(--~-) - V ( ~ ) ]  (1.6) 

while the functions c0(s) and v(s) are found from the equations 

~to(x)dx~K*(u)cosu(x-s)du=n (O<~ s <0,,) (1.7) 
o o 

" T Iv (z)d'c K*(u)cosu(x- s)du = r~ (-o. < s < ,,o) (1.8) 
0 

We will first consider approximation (1.4). Integral equation (1.87 is solved using the convolution 
theorem for a Fourier transformation. We thereby obtain v(s) = A - .  To solve integral equation (1.7) 
we use the Wiener-Hopf  method [7]. We finally obtain 

1 e-iUSds 
t o ( s ) = - ~  I . ~ ,  (1.9) 

r (-tu)K+ (O)K+ (u) 

where the contour F is a straight lying slightly above the real axis in the plane of the complex variable 
u, while the functions K*(u) are found by factorization, i.e. the representation 

K*(u) = K:(u)K*(u) (1.10) 

where the function/C~(u) K*(u)) is regular in the half-plane Im u > - e (Im u < e) and has no zeros 
here and e = min(B, C, E). 

Equation (1.10) is factorized in the form [7] 

K*~ (u) = C-T- iu 

1 
- L(u)+f_(u), 

~uZ + E 2 

+i 
f_+(u) = r~ u2~----- ~ +  In 

u + 4 u  2 + E 2 

+iE 

(1.11) 

Here the functionsf+(u) andf_(u) are regular in the half-plane Im u > - e and Im u < - e, respectively. 
We will now obtain that K~.(0) = ~/A. For convenience we will take U = ip in (1.9), in which case, 

using (1.11) we will have 

~'2(p) ePSdp, ~..~(p) = p + C eg(p ) 
to(s) = 2~t :. p .~A(p + B) 

- D  p + 4 p  2 - E 2 
g(p) = 7~4p 2 _ E 2 In E 

(1.12) 

where the contour F, is a straight line lying slightly to the right of the imaginary axis in the plane of 
the complex variable p. 

It can be seen from (1.12) that the function ~2(p) is a Laplace-Carson transformation of to(s). We 
will henceforth denote this relation as ~(p) : ~ to(s). We will assume that the value of the constant E 
in (1.4) is fairly large, so that the function exp[g(p)], where g(p) has the representation (1.12), can be 
approximated in the half-plane Re p > 0 with a high degree of accuracy as follows: 

eS0') = I + g(p) (1.13) 

Substituting (1.13) into the first relation of (1.12) and using reference tables [8] and the convolution 
theorem for the Laplace transformation, we obtain the following approximate expression for the function 
to(s) 
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1 (e -e'v C r---- "] p+C 
OJ(s) = - ~ - [ - ~ -  + -~ -e r f  alBs + I(s),) I(s)4--: ~ g ( p )  

l(s)= ] -o= oi i 4 ~ )  * e r f ~  Ko(E'c)dx 

(1.14) 

Here eft(x) is the probability integral while Ko(t) is a Bessel function, to calculate which one can use 
special approximations [9]. 

For the integral characteristic of the solution of Eq. (1.1) 

using (1.6) we obtain the expression 

1 

P =  f qo(x)dx (1.15) 
- l  

~ 2 
P = 2I co(x)dx--r., ~= - -  (1.16) 
f o A ~. 

Substituting (1.14) into (1.16) and bearing in mind that [8] 

i I -.Fe 
o [ 8 ~  

• p+C ! ~(~)a, ~: ~ g ( p ) : - ,  S(s) = - D  + 

(1.17) 

we obtain 

2A~B[ ( /-'~-~ e_Bgt ~+ 2 , t r ,  (1.18) 

Expression (1.18) can be simplified considerably when ~. ~< ~. if we bear in mind the fact that, from 
the relation 

pp~/-p-~g(P)-2~-BEpLP+C _ -CD [I_(I[.2___B_CI+ 2E)P+O(p2)] (p'-->O) (1.19) 

the following asymptotic equality follows [10] 

- C D  ( 1 1 2 )) j(s) =T~2t s-~+-e- k +O(s-' (s-~+~) 

Substituting (1.2) into (1.18) we obtain, when k ~< 1/4 

(1.20) 

Note that, together with the additive form of the principal term of the asymptotic solution of the 
problem for small k (1.6), one can often use the equivalent multiplicative form [6] 

fA l + x  1 - x  
(1.22) 

We will now consider approximation (1.5). The advantage of approximation (1.5) is the factor that 
using it is much easier to satisfy condition (1.13) than when using (1.4). The non-analyticity of the function 
K*(u) of the form (1.5) hinders as effective solution of Eqs (1.7) and (1.8). Hence, we will use the 
perturbation method, replacing the function K*(u) by the expression 

a 1 ' 
-7=~  2 -  - + • (1.21) 

B E 2B 
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=.(.): oxSO / 
: + :  "1, j (1.23) 

and then allowing e to approach zero. 
The solution of integral equation (1.8), after this replacement, is given, as before, by the expression 

u(s) = A -1 (but here the formula for A is different). 
We can easily factorize (1.10) is the argument of the exponential function in formula (1.23) is 

represented as 

D 4 u  2 + E 2 
u2 + E2 = D[g+(u)+ g_(u)] (1.24) 

where the functionsg+(u) andg_(u) are regular in the half-planes Im u > - e and Im u < - e, respectively. 
Then 

K:(.) = B4TCTd 
C~ iu 

To construct the functions g._(u) we use the identity 

~U2+e  2 1 E 2 - E  2 r 

u 2+E 2 =~u 2+e 2 2iE L(u-i! 

and the well-known formulae [7] 

e °a±(") (1.25) 

1 _ 1 

(U - iE)4U 2 + e 2 (U + iE) U 2 ~ +  ~ 2 
(1.26) 

U+~U2 +E 2 I + i  
u2-~ffi~+~2=f+(ul+f_(u), f±(u)= 7t u2~-~-+E2 In +ie 

1 
(u - ~) u2~=~+ E 2 = F÷(u) + F_(u) (1.27) 

F+(u) = f+(u)'~ f±(~) F_(u) = f_(u)+ f±(~) 
, 

where in the last two formulae the upper sign is taken if the point is situated in the upper half-plane 
and vice versa. From (1.26) and (1.27) we obtain 

g+(u)= ~ u 2 +E2)f+(u)-iu E2 -E2 E f+(iE) (1.28) 

The expression for g_(u) is similar. 
In (1.28) we take the partial limit as e ~ 0. Then 

g+ (u) = ~ [  iuf+ (u) + Ef+( iE)] (1.29) 

It is now easy to see that K~(0) = ~/A. Further, for the function co(s) we obtain representation (1.12), 
where we must put 

g(p) = p2~--_eE2 [pf(p)-  Ef(E)], f (p)  = 

We will write the following chain of relations [8] 

pf(p) :-4 K°(Es) ¢~o 

1 In P+4P2-1~2 (1.30) 
lg4p  2 -- E 2 ~., 

In(~s / 2) + C In(2p / I~) 
) <--: - -  (1.31) 

where C is Euler's constant. 
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Using the chain (1.31) we take the final limit as e --+ 0 in expression (1.30) for g(p). We obtain 

-Dp In p (1.32) 
e 

The approximate equality (1.30), (1.32), for example, on the positive part of the real p axis is 
satisfied with high accuracy with less constraints on the value of E from (1.5) (E must not be too 
small), than in the case (1.4), (1.12) (for the same value of D). Using the first formula of (1.12), (1.13) 
and (1.32) and reference tables [8], we obtain the following approximate expression for the function 
co(s) 

1 (e -as 1 ) p+C 

'(s)= ~ i [ e ~ +  l_.~er f ~ t e ~  Ei(-Ex,+ e -g" Ei,Ez)]dx (1.33) 
o LqX(s-x~ ",lA 

Here Ei(+__x) is the integral exponential function [11], for the numerical realization of which it is 
convenient to use the formulae [9] 

Ei(x)= l n x + C +  i 
e t - 1 dt, Ei(-x) = - e  I (x) (x > 0) 

(1.34) 

0 t 

where we have the highly accurate approximations 5.1.53 and 5.1.54 [9] for the function El(X), while 
the integral in (1.34) can be evaluated by the Gauss quadrature formula. 

As previously, for the integral characteristic/'f-~ we obtain the expression (~ = 2/~.) 

P =  1 + erf x ] ~  + -st; _ ~ + . ~  j(~) 
f AB A 

JS" l('C)d x = D JS [ e-S(s-,) 1 , "" - -~]  J(s) 
o o (1.35) 

x[e" Ei( -E'0-  e -E' Ei(Ex)]ax 

Expression (1.35) can be simplified considerably when ~. ~< )~. if we bear in mind the fact that, from 
the relation 

D 1+ l _  1 P+ p2 In p 
pqp+ ~ 

we obtain the asymptotic equality [10] 

J ( s ) = ~ [  ln(Es)+C+(I-  2BJs (s-->+oo) (1.37) 

Substituting (1.37) into the first formula of (1.35) we obtain, when ~. ~< 1/4 

P ~ _'U'7"-~2 [In(E~)+C+(1 1 . . )1]+ 2 1 
7=A me L ~ AB 

(1.38) 

2. As an example, consider the well-known axisymmetric contact problems [2, 3] of the interaction 
between an infinite elastic cylinder of radius R with a rigid band of width 2a and base r = R - $ (Problem 
1), and also the problem of the interaction between an elastic space, weakened by an infinite cylindrical 
cavity of radius R, with a rigid bearing of width 2a and base r = R + $ (Problem 2). After introducing 
the dimensionless quantities 

z R. . ~  --8 (2 1) =-- X=-- 9(x)= . f= X 
a a a 
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where q(z) are the unknown normal contact pressures and 0 is the contact stiffness, we arrive at Eq. 
(1.1) in which, for Problem 1 

while for Problem 2 

2 - I  
K(u)=[u2(~'-~l ( u ) - l ) - 2 ( l - v ) ]  ; ~21(u)=  Io(u)/ll(U ) (2.2) 

-2(.)-- (2.3) 

For Problems 1 and 2 in expression (1.3) for large values of [bt I in the case when v -- 0.3 we must 
put, respectively 

1) c I = 0.4,  c2 = - 0 .965,  c 3 = - 2.336 

2) c I = - -  0.4, c 2 = - 0.965,  c 3 --- 2.336 
(2.4) 

For small values of u we have 

1) K(u) = [2(1 + v ) ] - l [ l  + O(u4)]  

2) K(u) = [2(1 - v) ]  -1 { 1 - u212(1 - v)]  -1 + O(u 4 ln2u) } 
(2.5) 

It can be seen from (2.5) that approximation (1.4) is more suitable for both problems, in which we 
must take E > 1 to satisfy condition (1.13). Nevertheless, we will also investigate the solution with 
approximation (1.5), with which comparatively high accuracy can be achieved due to the smallness of 
the quantity DE -2 compared withA, since the term DE -2 [u [ is present in the expansion of the function 
(1.5) as u ~ 0. Further, we will assume that Poisson's ratio v = 0.3. Then, in the case of (1.4) we have 
for Problems 1 and 2, respectively 

1) B = 1.4442, C = 2.0929,  D = 0.4, E = 2.5968 

(2.6) 
2) B = 0 .8353,  C = 0 .8970,  D = - 0.4, E = 1.0699 

and the error of approximation (1.4) for all 0 ~< u < oo does not exceed 8.7% for Problem 1 and 5% 
for Problem 2. Moreover, for Problem 1, the asymptotic form (2.5) is taken into account in the accuracy. 
For the values (2.6) the error of approximation (1.13) and (1.12), for example, on the positive part of 
the real axis does not exceed 1% for Problem 1 and 2% for Problem 2. 

Introducing the values of the constants (2.6) into (1.21), V~e have 

1) pf-I = 2 .5838 ~ + 0.7882;  2) pf-I  = 1.3567 ~ + 1.1648 ( 2 . 7 )  

When ~. ~< 1/4 the values calculated from (2.7) differ by less than 1% from the corresponding values 
obtained using (1.18). 

Using approximation (1.5) we obtain that 

1) B = 1.0962, C = 1.6882, D = 0.4, E = 3.0193 (2.8) 

2) B = 0 .3562,  C = 0.7062,  O = - 0.4, E = 0.7501 

and the error of approximation (1.5) for all 0 ~< u < oo for both problems does not exceed 5%. For the 
values given by (2.8) the error of approximation (1.13) and (1.32), for example, on the positive part of 
the real axis for both problems does not exceed 1%. 

Introducing the values of the constant (2.8) into (1.38) and dropping terms of the order of 4 -1 , in 
view of their smallness, we have 

1) pf-1 = 2 .5999  ~ - 0 .07262  In ~ + 0 .5862 

(2.9) 
2) p f - I  = 1.4001 ~ + 0 .6337 In ~ + 0.2181 

When ~. ~< 1/4 the values calculated from (2.9) differ by less than 1% from the corresponding values 
obtained using (1.35). Moreover, when ~. ~< 1/4 the values obtained using (2.9) differ from the values 
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Table l 
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1 8 1  , I I 
xli [21 1.44 2.09 3.55 

Zll (I.18) - - 3.42 

Zll (1.35) - - 3.30 

X~ [2] 0.459 0.685 1.20 

Z~ (I.6), (1.4) - - 1.29 

X~ (1.6), (I .5) - - 1.22 

X~ [2] 0.459 

X~ (1.22), (1.4) 

X~ (1.22), (1.5) 

5.97 11.1 21.5 

5.77 10.9 21.2 

2.52 5.14 10.3 

2.42 5.04 I 0.3 

0.651 1.00 - - - 

- 0.896 1.28 !.81 2.57 

- 0.878 1.27 1.81 2.57 

Z~ [2] 1.32 1.77 

z ~  (1 .18)  - - 
X 2 (1.35) - - 

X 2 [21 0.432 0.602 

Z~ (1.6), (1.4) - - 

X22 (I.6), (I .5) - - 

X~ [2] 0.402 0.518 

X~ (1.22), (1.4) - - 

Z~ (1.22), (1.5) - - 

2.52 - - - 

2.45 3.86 6.59 12.0 

2.47 3.95 6.87 12.8 

0.924 - - - 

0.872 1.48 2.76 5.43 

0.885 1.53 2.92 5.87 

0.640 - - - 

0.686 0.937 1.32 1.86 

0.697 0.964 1.37 1.93 

o b t a i n e d  u s i n g  ( 2 . 7 )  b y  2 %  a n d  7 %  f o r  P r o b l e m s  1 a n d  2,  r e s p e c t i v e l y ,  w h i c h  c o n f i r m s  t h e  a p p l i c a b i l i t y  

o f  a p p r o x i m a t i o n  ( 1 . 5 )  f o r  s o l v i n g  P r o b l e m s  1 a n d  2 f o r  s m a l l  3.. 

T a b l e  1 g i v e s  v a l u e s  o f  t h e  q u a n t i t i e s  

Z~ = pf - I ,  X~ = q~(0)f  -1,  X~ = limq~(x) l - ~ x 2 f  -1 (x --) 1) ( 2 . 1 0 )  

calculated using the above formulae for small 3. and also using formulae (1.3), (1.12) and (1.14)-(1.18) 
from [2] for large 3.. Note that previously [2, p. 708] the constants cn (2.4) and, consequently, anm of 
the form (2.9) [2] were written incorrectly for Problems i and 2 so that the calculations using the "large 
3." method from [2] must also be regarded as inaccurate. The recalculated values are as follows: 

1) a30 = - 0 .556,  a2o = - 0.628,  a l l  = -  0.428,  a31 = 1.427. a21 = - 0.612 

(2.11) 
2) a3o = - 0 .459,  a20 = 0.628,  aj  I = - 0 .428,431 = - 0 .390,  a21 = 0 .612 

The value of the superscript n = 1 and n = 2 in (2.10) corresponds to Problems 1 and 2. The values 
Znz, 3 for 3. = 2, obtained from (1,6) and (1.22), join up with the values of these quantities obtained [3] 
using another modification of the singular asymptotic "small 3." method. In the neighbourhood of the 
values 3. = 2 the asymptotic solutions are very close, in the limits of their accuracy. Hence, we can assert 
that we have obtained an effective solution of Problems 1 and 2 over the whole range of variation of 
the dimensionless parameter 3. ~ (0, oo). 
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